Allwinner Technology

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found.

Allwinner Technology Co., Ltd
Native name
全志
Public
Traded as SHE:300458
Industry Fabless semiconductors
Founded 2007; 18 years ago (2007)
Headquarters Zhuhai, Guangdong, China
Products Integrated circuits
Number of employees
901
Website http://www.allwinnertech.com/

Allwinner Technology is a fabless semiconductor company that designs mixed-signal systems on a chip (SoC). The company is headquartered in Zhuhai, Guangdong, China. It has a sales and technical support office in Shenzhen, Guangdong, and logistics operations in Hong Kong.

Since its founding in 2007, Allwinner has released over fifteen SoC processors for use in Android-based tablets,[1] as well as in smartphones, over-the-air OTT boxes, video camera systems, car DVRs, and car media players.[2]

In 2012 and 2013, Allwinner was the number one supplier in terms of unit shipments of application processors for Android tablets worldwide.[3][4][5] According to DigiTimes, in Q4 2013 Allwinner lost its number one position in terms of unit shipments to the Chinese market to Rockchip.[6][7] For Q2 2014, Allwinner was reported by DigiTimes to be the third largest supplier to the Chinese market after Rockchip and MediaTek.[8] DigiTimes has also projected that Allwinner will fall to the number four position in Q4 2014, being passed by Intel, as Allwinner's unit shipments continue to decline.[9]

Product Lines

File:Allwinner processors makes the NO.1 shipping processor for android tablets.jpg
Allwinner was the No.1 supplier of application processors for Android tablets in 2012
File:Allwinner Product History.png
Allwinner Product History

A-Series

File:AllWinner A23 Dual-Core SoC.jpg
Allwinner A23 Dual-Core in a Chinese Tablet

A series processors are used for mobile applications, mainly referring to tablet application.[10]

A1x family

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In 2011, the company became an ARM processor licensee,[11] and subsequently announced a series of ARM Cortex-A8 powered mobile application processors, including A10, A13, A10s and A12, which were used in numerous tablets, and also in PC-on-a-stick and media center devices. They have also been adopted in free hardware projects like the Cubieboard development board.

A2x and A3x family

In December 2012, Allwinner announced the availability of two ARM Cortex-A7 MPCore powered products, the dual-core Allwinner A20 and quad-core Allwinner A31. Production of the A31 started in September 2012 and end products, mostly high-end tablets from Chinese manufacturers, appeared on the market in early 2013, including the Onda V972. Allwinner was the first to make this ARM processor core available in mass production.

In March 2013, Allwinner launched its quad-core Phablet processor A31s. Based on quad-core cortex-A7 CPU architecture, this processor allows 3G, 2G, LTE, WIFI, BT, FM, GPS, AGPS and NFC using a minimum of external components.

In October, 2013, Allwinner released its second dual-core A23, touted to be "The most efficient dual core processor" for tablets.[12] The A23's CPU frequency was intended to run up to 1.5 GHz.[13]

In June, 2014, Allwinner announced the A33 quad-core SoC that is pin compatible with Allwinner's A23. The new SoC features four Cortex-A7 cores with 256 KB L1 cache, 512 KB L2 cache and a Mali-400 MP2 GPU. A new feature is the support of the OpenMAX API.[14] Allwinner has positioned the A33 for entry-level tablets, targeting quad-core tablets priced from $30 to $60, and in July 2014 announced that it has started mass production of the chip, which will sell for as low as $4 per unit.[15]

A5x family

In April 2019, Allwinner announced the A50 28 nm quad-core SoC.[16] The A50 features four Cortex-A7 cores running up to 1.8 GHz with 512 KB L2 cache and a Mali-400 MP2 GPU.

A6x family

In June 2017, Allwinner announced the A63 28 nm quad-core SoC at APC 2017 Conference.[17] The A63 features four Cortex-A53 cores running up to 1.8 GHz with 512 KB L2 cache and a Mali-T760 MP2 GPU with OpenGL ES 3.2 support. VPU with 4K/6K VP9, H.265, and H.264 4K @ 30fps video decoder and H.264 HP encoder 1080P@30fps

A8x family

In October 2013, Allwinner disclosed its upcoming octa-core A80 SoC, featuring four high-performance ARM Cortex-A15 and four efficient ARM Cortex-A7 CPU cores in a big.LITTLE configuration.[18]

On June 30, 2014, Chinese brand Onda officially released its octa-core Onda V989 tablet, which is based on Allwinner A80. This is the first Allwinner A80-based tablet that is available to consumers, priced at CNY 1099 (~US$177).[19]

In September 2014, Allwinner announced the Allwinner A83T, an octa-core tablet processor that packs eight highly energy-efficient Cortex-A7 cores that can run simultaneously at up to around 2.0 GHz. It also includes a PowerVR GPU. The first tablet with the chip was expected to hit the market in Q4 2014.[20]

A10x/20x/30x family

In April 2019, Allwinner announced their roadmap for 2019 to 2020 feature the A100, A200, A300 and A301 SoC.[16] The Allwinner A200 was descrided as “AI blessing, computational power”.

F-Series

F series are processors based on Allwinner's melis OS, mainly used in smart video radios, video MP5, etc.[10]

From 2007 to 2011, Allwinner introduced its F-series processors, including the F10, F13, F18, F20, F1E200, F1C100, and F20. This series runs Allwinner's in-house operating system Melis2.0, which is now mainly used in vehicle multimedia systems, E-ink readers, video intercom systems, and so on.

H-Series

The H-series, introduced in 2014, are integrated application processors primarily targeted at OTT set-top box applications e.g. HDMI mini PCs, gaming boxes, etc.;[10]

Allwinner has launched the A80 octa-core OTT box solution, targeting at high-end OTT box market, and launched the Allwinner H8 octa-core processor for mid-range OTT boxes, and most recently launched the quad-core Allwinner H3 targeting the US$35 - $50 OTT box market.[21]

R-Series

The R (“Real-Time") Series Chip is designed for low power applications where timing is critical and must be done at the edge rather than in the fog or cloud.[22] The chip also has built in redundancies to meet industrial and automotive standards for processing.[23]

The R Series Chip has been applicable to a number of different industries including Industrial Automation, Safe PLCs, Power Generation and Distribution, Healthcare and Automotive Technology.[23] The technology, specifically the R16 Chip, has also been utilised for robotic vacuums and smart speakers resulting from a longterm partnership with the Cogobuy Group's subsidiary IngDan.[24]

Cogobuy's preparatory K-system was used as the basis to add integrated SLAM modules with Allwinner chip's.[25] The technical advantages and patents Cogobuy held allowed for chip localisation of edge computing required for the AI room mapping and cleaning.[26] The R40 and R16 technology has been implemented on a number of Banana Pi models.[27][28] The R8 Chip was also used for “The World’s First Nine Dollar Computer” Kickstarter project in 2015.[29]

File:Allwinner Product Roadmap 20131010.jpg
Allwinner Product Roadmap 20131010

V-Series

The V-Series are video encoding processor targeting applications such as smart DVR, IP camera and smart home applications. It is similar to the A series SoC, but adds support for functions such as digital watermarking, motion detection and video scaling, as well as a CBR/VBR bit rate control mode.[30]

Chipset specifications

The Allwinner SoC family includes A-series, which is intended for Android OS, and F-series, which is intended for the company's self-developed Melis operating system.

The A-Series, including the A10, A20 and A31 SoCs, have a proprietary in-house designed multimedia co-processing DSP (Digital Signal Processing) processor technology for hardware accelerated video, image, and audio decoding, called CedarX (with subprocessing called "CedarV" for video decoding and "CedarA" for audio decoding), able to decode 2160p 2D and 1080p 3D video. The main disadvantages with CedarX technology and associated libraries is that Allwinner's own CedarX proprietary libraries have no clear usage license, so even if the source code for some versions is available the terms-of-use is unknown in open source software, and there is no glue code for any other multimedia frameworks on GNU/Linux systems that could be used as a middle-ware, like for example OpenMAX or VAAPI.

A-Series

The A-series are integrated application processors primarily targeting tablets as well as targeting mini PCs, development boards and TV boxes.[2]

SoC Fab CPU GPU (Clock) Video Decoder Video Encoder Package,
Size (mm), Pitch (mm)
Application Examples
ISA4K µarch Cores L2 cache
A10 55 nm ARMv7-A Cortex-A8 1 256 KB Mali-400 (300 MHz)[31] 2160p H.264 1080p @ 30 fps BGA441, 19×19, 0.80 Tablet, smart TV
List
A10s BGA336, 14×14, 0.65 HDMI Dongle OLinuXino A10S
A13 eLQFP176, 20×20 Tablet, E-reader
List
  • CCE Motion Tab TR71, OLinuXino A13
    iView CyberPad, iView-420TPC
A20[32] Cortex-A7 2 256 KB[33][34] Mali-400 MP2 (350 MHz)[31] BGA441, 19×19, 0.80 Tablet, smart TV
List
A23 40 nm 1080p @ 60 fps multi-format H.264 1080p @ 60 fps BGA280, 14×14, 0.80 Tablet Kiano SlimTab 8
A31 4 1 MB PowerVR SGX544 MP2 (350 MHz)[31] 2160p
4K×2K
BGA609, 18×18, 0.65 Tablet, Smartphone, smart TV
List
  • Readboy G50, GoClever Orion 70,Foxconn InFocus,
    Mele A1000G,Onda V972, Ployer MOMO19HD,
    Bmorn K23, Ampe A10 Flagship, Epudo ES1006Q, eSTAR CRYSTAL, Mixtile LOFT-Q
A31s H.264 1080p @ 30 fps BGA460, 18×18, 0.80 Phablet,Tablet, smartphone, smart TV
List
  • Boardcon Compact31S,[35]
    iView CyberPad iView-788TPC,
    MSI Primo81, Teclast P88s mini,
    Ainol Novo 9 Firewire,
    Fusion5 Xtra POWER4 Tablet PC,
    Apical M7853,
    Ployer momo mini, Gajah MD7019,
    JWD m785, MELE AHD10A04,
    Texet TM-7867, HP 8[36]
A33[37][38] 512 KB Mali-400 MP2 (350 MHz)[31] 1080p @ 60 fps multi-format H.264 1080p @ 60 fps BGA282, 14×14, 0.80 Tablet GoTab GT97X[39]
A80 Octa[40] 28 nm

HPM

big.LITTLE:
Cortex-A15 + A7
8 2 MB +
512 KB
PowerVR G6230 (Rogue) (533 MHz)[31] 4K×2K @30 fps, H.265/VP9 1080p @30 fps H.264 HP/VP8 4K×2K @30 fps FCBGA636, 19×19, 0.65 Tablet, smart TV, TV box, mini PC
List
  • Optimus Board,[41] Cubieboard 4, PCDuino 8, Onda V989, ZERO Devices Z8C Alice, Tronsmart Draco AW80[42]
A83T[20][43] Cortex-A7 1MB[44] PowerVR SGX544 (700 MHz)[31] 1080p @ 60 fps, H.264, HVEC MP/L5.2 H.264 1080p @ 60 fps FCBGA345, 14×14 Tablet InFocus CS1 A83 (C2107)[45]
A64[46] 40 nm ARMv8-A Cortex-A53 4 512 KB Mali-400 MP2 H.264/H.265 BGA396, 15×15, 0.65 Tablet PINE64, PINE64+[47]

H-Series

The H-series, introduced in 2014, are primarily targeted at OTT set-top box applications.

SoC Fab CPU GPU Video Decoder Video Encoder Package Application Examples
ISA µarch Cores L2 Cache
H2 40 nm ARMv7-A Cortex-A7 4 ? Mali-400 MP2 @ 600 MHz 1080p @ 60 fps H.264 1080p @ 30fps ? OTT box Orange PI Zero
H3[48][49]

[50]

4 512 KB 1080p @ 60 fps, 4K H.265 @ 30 fps FBGA347, 14 × 14 mm, 0.65 mm Pitch Zidoo X1, Tronsmart Draco H3, Orange Pi PC, NanoPi NEO
H8[51] 28 nm HPC 8 ? PowerVR SGX544 @ 700MHZ 1080p @ 60 fps, 1080p H.265/VP9 @ 30 fps H.264 1080p @ 60 fps FCBGA345, 14 × 14 mm Cubieboard 5
H64[52] 40 nm ARMv8-A Cortex-A53 4 ? Mali-400 MP2 H.264/H.265 BGA396, 15 × 15 mm, 0.65 mm Pitch Orange Pi Win, Orange Pi Win Plus
H5 512 KB Mali-450 MP4 H.264/H.265 4k@30fps VP8 1080p@60fps FBGA347, 14 × 14 mm, 0.65 mm Pitch Orange Pi Zero Plus, Orange Pi PC2, Orange Pi Prime, NanoPi NEO2, NanoPi NEO Plus2
H6 28 nm ARMv8-A Cortex-A53 4 512 KB Mali-T720 MP2

@600 MHz OpenGL ES 3.1

OpenCL 1.1

H.265/HEVC 4K@60fps

H.264/AVC, VP9 4K@30fps VP6/VP8, 1080P@60fps

H.264 BP/MP/HP@level 4.2 4K@30fps BGA451, 15 x 15mm,

0.65mm pitch

OTT, DVB and IPTV markets Zidoo H6 Pro, Orange Pi One Plus, Orange Pi Lite 2, Orange Pi 3

F-Series

SoC CPU Memory Video Decoder Video Encoder Package OS Application
F1C100 ARM9 SDR 720p N/A LQFP128 Melis 2.0 Car MP5, Car Headrest, Visual Bombox, Visual Radio
F1E200 DDR 1080p N/A eLQFP128 E-ink Reader, PMP
F10 N/A LQFP176 Multimedia Box, HD Player
F13 MPEG4 720p @ 30 fps Car MP5
F18 LQFP216 Visual Intercom System
F20 DDR/DDR2 H.264 1080p @ 30 fps BGA400 Car DVR, Multimedia Box, Mobile Karaoke

R-Series

SoC CPU GPU Video Decoder Video Encoder Package Application Examples
ISA µarch Cores L2 Cache
R8[53][54] ARMv7-A Cortex-A8 1 ? Mali-400 MP2[55] 1080p@30fps 720p@30fps eLQFP176 IoT, Linux on the Stick, Smart Device $9 Next Thing Co.'s CHIP computer
R16[56] Cortex-A7 4 512 KB 1080p@60fps 1080p@60fps BGA282 IoT, Security Systems NES Classic Edition, SNES Classic Edition[57]
R40[58] ? FBGA468 IoT, Security Systems
R58[59] 8 ? PowerVR SGX544 MP1 1080p@60fps or 720p@120fps FCBGA345, 14mm × 14mm Hybrid PC, Tablet, Multimedia Box, HD Player
R18 ARMv8-A Cortex-A53 4 512 KB Mali-400 MP2 ? ? ? ?

T-Series

SoC CPU GPU Video Decoder Video Encoder Package Application Examples
ISA µarch Cores L2 Cache
T2[60] ARMv7-A Cortex-A7 2 ? Mali-400 MP2 1080p@30fps 1080p@30fps FBGA441, 19mm × 19mm In-Car Entertainment, SatNav Nowada K1201
T3[61] 4 512Kb 1080p@45fps 1080p@45fps FBGA468, 16mm × 16mm Ezonetronics CT-0008
T8[62] 8 ? PowerVR SGX544 MP1 1080p@60fps 1080p@60fps FCBGA345, 14mm × 14mm Roadover T800 IX25

Allwinner processor ecosystem

Lua error in package.lua at line 80: module 'strict' not found.

File:Allwinner IDH List.jpg
Allwinner IDH List

Allwinner Technology cooperates with around ten independent design houses (IDHs) based in Shenzhen, China, who develop solutions based on Allwinner processors. They include iNet Technology, Worldchip Digital Technology, Sochip Technology, Topwise Communication, ChipHD Technology, Highcharacter Science and Technology, WITS Technology, Ococci Technology, Next Huawen Technology, and Qi Hao Digital Technology.

Apart from the white-box market, Allwinner processors can also be found in many brand products, including HP, MSI, ZTE, NOOX, GoTab, Skyworth, MeLE, Polaroid, Micromax, Archos, Texet, Ainol, Onda, Ramos, Teclast, Ployer, Readboy, Noah, RF, Bmorn, Apical, Astro Queo, etc.

Free and open-source software support

Due to the low price of the A10 SoC, the fact that it has a special rescue mode, and the early availability of U-Boot and Linux kernel source (through several device makers), the Allwinner SoCs have been popular among open-source software developers. Since at least 2012 the linux-sunxi community has been one of the most active ARM SoC communities, and the slightly older hardware has only very minimal dependence on firmware or blobs.[63][64]

Since 2014 Allwinner is also an official member of the Linaro group, a nonprofit engineering consortium aimed at developing open-source software for the ARM architecture.[65] However, it has been noted that most of the contributions that Allwinner has made to the Linaro group has been in the form of binary blobs, which is in clear violation of the GNU GPL license that the Linux kernel uses.[66]

Android 5.0 Lollipop support

In December 2014, Allwinner released its Android 5.0 SDK for Allwinner A33 quad-core solution.[67]

Linux controversies

GPL controversy

Allwinner has been accused multiple times[68] of violating the GPL license by not providing Linux/Android kernel source code or U-Boot source, and by using LGPL-licensed code within their binary blobs, etc.[69]

Backdoor controversy

Allwinner has also been accused of including a backdoor in its published version of the Linux kernel.[70][71] The backdoor allows any installed app to have full root access to the system. While this may be a remnant of debugging during the development process, it presents a significant security risk to all devices using the Allwinner provided kernel.

See also

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. 10.0 10.1 10.2 Lua error in package.lua at line 80: module 'strict' not found.
  11. ARM processor licensee on ARM.com
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. 16.0 16.1 Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. 20.0 20.1 Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. 23.0 23.1 Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. 31.0 31.1 31.2 31.3 31.4 31.5 Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. Lua error in package.lua at line 80: module 'strict' not found.
  37. Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. Lua error in package.lua at line 80: module 'strict' not found.
  40. Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. http://www.banana-pi.org/m3.html
  45. Lua error in package.lua at line 80: module 'strict' not found.
  46. Lua error in package.lua at line 80: module 'strict' not found.
  47. Lua error in package.lua at line 80: module 'strict' not found.
  48. Lua error in package.lua at line 80: module 'strict' not found.
  49. Lua error in package.lua at line 80: module 'strict' not found.
  50. Lua error in package.lua at line 80: module 'strict' not found.
  51. Lua error in package.lua at line 80: module 'strict' not found.
  52. Lua error in package.lua at line 80: module 'strict' not found.
  53. Lua error in package.lua at line 80: module 'strict' not found.
  54. Lua error in package.lua at line 80: module 'strict' not found.
  55. Lua error in package.lua at line 80: module 'strict' not found.
  56. Lua error in package.lua at line 80: module 'strict' not found.
  57. Lua error in package.lua at line 80: module 'strict' not found.
  58. Lua error in package.lua at line 80: module 'strict' not found.
  59. Lua error in package.lua at line 80: module 'strict' not found.
  60. Lua error in package.lua at line 80: module 'strict' not found.
  61. Lua error in package.lua at line 80: module 'strict' not found.
  62. Lua error in package.lua at line 80: module 'strict' not found.
  63. Sunxi Community website
  64. FOSDEM talk about the Sunxi Community on the FOSDEM website.
  65. Announcement of Allwinner membership on Linaro news site.
  66. Allwinner GPL Violations.
  67. Lua error in package.lua at line 80: module 'strict' not found.
  68. Lua error in package.lua at line 80: module 'strict' not found.
  69. Lua error in package.lua at line 80: module 'strict' not found.
  70. Lua error in package.lua at line 80: module 'strict' not found.
  71. Lua error in package.lua at line 80: module 'strict' not found.