Atmospheric radiative transfer codes

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

An Atmospheric radiative transfer model, code or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere, such as the Earth's.

Methods

At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation. For an instrument response, this is then convolved with the spectral response of the instrument. A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.

Applications

Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols or clouds. In such applications radiative transfer codes are often called radiation parameterization. In these applications the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere one calculates heating rates, radiative fluxes, and radiances.

There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 80's - early 00's. Current (2011) project Continual Intercomparison of Radiation Codes emphasises also using observations to define intercomparison cases. [2]

Table of models

Lua error in package.lua at line 80: module 'strict' not found.

Name
Website
References
UV
Visible
Near IR
Thermal IR
mm/sub-mm
Microwave
line-by-line/band
Scattering
Polarised
Geometry
License
Notes
4A/OP [1] Scott and Chédin (1981)

[3]

No No Yes Yes No No line-by-line ? ? freeware
6S/6SV1 [2] Kotchenova et al. (1997)

[4]

No Yes No No No No band ? Yes non-Lambertian surface
ARTS [3] Buehler et al. (2005)

[5]

No No No Yes Yes Yes line-by-line Yes Yes spherical 1D, 2D, 3D GPL
COART [4] Jin et al. (2006)

[6]

Yes Yes Yes Yes No No Yes No plane-parallel free
CRM [5] No Yes Yes ? No No ? ? freely available Part of NCAR Community Climate Model
CRTM [6] No Yes Yes Yes No Yes band Yes ?
DART radiative transfer model [7] Gastellu-Etchegorry et al. (1996)

[7]

No Yes Yes Yes No No band Yes ? spherical 1D, 2D, 3D free for research with license non-Lambertian surface, landscape creation and import
DISORT [8] Stamnes et al. (1988)

[8]

Yes Yes Yes Yes No radar Yes No plane-parallel free with restrictions discrete ordinate, used by others
Fu-Liou [9] Fu and Liou (1993)

[9]

No Yes Yes ? No No Yes ? plane-parallel usage online, source code available web interface online at [10]
FUTBOLIN Martin-Torres (2005)

[10]

λ>0.3 µm Yes Yes Yes λ<1000 µm No line-by-line Yes ? spherical or plane-parallel handles line-mixing, continuum absorption and NLTE
GENLN2 [11] Edwards (1992)

[11]

? ? ? ? ? ? line-by-line ? ?
KARINE [12] Eymet (2005)

[12]

No No Yes No No ? ? plane-parallel GPL
KCARTA [13] ? ? Yes Yes ? ? line-by-line Yes ? plane-parallel freely available AIRS reference model
KOPRA [14] No No No Yes No No ? ?
LBLRTM [15] Clough et al. (2005)

[13]

Yes Yes Yes Yes Yes Yes line-by-line ? ?
LEEDR [16] Fiorino et al. (2014)

[14]

λ>0.2 µm Yes Yes Yes Yes Yes band or line-by-line Yes ? spherical US government software extended solar & lunar sources;

single & multiple scattering

LinePak [17] Gordley et al. (1994)

[15]

Yes Yes Yes Yes Yes Yes line-by-line No No spherical (Earth and Mars), plane-parallel freely available with restrictions web interface, SpectralCalc
libRadtran [18] Mayer and Kylling (2005)

[16]

Yes Yes Yes Yes No No band or line-by-line Yes Yes plane-parallel or pseudo-spherical GPL
MATISSE [19] Caillault et al. (2007)

[17]

No Yes Yes Yes No No band Yes ? proprietary freeware
MCARaTS [18] GPL 3-D Monte Carlo
MODTRAN [20] Berk et al. (1998)

[19]

<50,000 cm−1 Yes Yes Yes Yes Yes band Yes ? proprietary commercial solar and lunar source, uses DISORT
MOSART [21] Cornette (2006)

[20]

λ>0.2 µm Yes Yes Yes Yes Yes band Yes No freely available
RFM [22] No No No Yes No No line-by-line ? ? available on request MIPAS reference model based on GENLN2
RRTM/RRTMG [23] Mlawer, et al. (1997)

[21]

<50,000 cm−1 Yes Yes Yes Yes >10 cm−1 ? ? free of charge uses DISORT
RTMOM [24] λ>0.25 µm Yes Yes λ<15 µm No No line-by-line Yes ? plane-parallel freeware
RTTOV [25] Saunders et al. (1999)

[22]

λ>0.4 µm Yes Yes Yes Yes Yes band Yes ? available on request
SBDART [26] Ricchiazzi et al. (1998)

[23]

Yes Yes Yes ? No No Yes ? plane-parallel uses DISORT
SCIATRAN [27] Rozanov et al. (2005)

,[24]

Rozanov et al. (2014)

[25]

Yes Yes Yes No No No band or line-by-line Yes Yes plane-parallel or pseudo-spherical or spherical
SHARM Lyapustin (2002)

[26]

No Yes Yes No No No Yes ?
SHDOM [28] Evans (2006)

[27]

? ? Yes Yes ? ? Yes ?
Streamer, Fluxnet [29][30] Key and Schweiger (1998)

[28]

No No λ>0.6 mm λ<15 mm No No band Yes ? plane-parallel Fluxnet is fast version of STREAMER using neural nets
XRTM [31] Yes Yes Yes Yes Yes Yes Yes Yes plane-parallel and pseudo-spherical GPL
Name Website References UV VIS Near IR Thermal IR Microwave mm/sub-mm line-by-line/band Scattering Polarised Geometry License Notes

Molecular absorption databases

For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.

Name Author Description
HITRAN[29] Rothman et al. (1987, 1992, 1998, 2003, 2005, 2009, 2013) HITRAN is a compilation of molecular spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The original version was created at the Air Force Cambridge Research Laboratories (1960's). The database is maintained and developed at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA.
GEISA[30] Jacquinet-Husson et al. (1999, 2005, 2008) GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) is a computer-accessible spectroscopic database, designed to facilitate accurate forward radiative transfer calculations using a line-by-line and layer-by-layer approach. It was started in 1974 at Laboratoire de Météorologie Dynamique (LMD/IPSL) in France. GEISA is maintained by the ARA group at LMD (Ecole Polytechnique) for its scientific part and by the ETHER group (CNRS Centre National de la Recherche Scientifique-France) at IPSL (Institut Pierre Simon Laplace) for its technical part. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board of the METOP European satellite) through the GEISA/IASI database derived from GEISA.

See also

References

Footnotes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
General
  • Bohren, Craig F. and Eugene E. Clothiaux, Fundamentals of atmospheric radiation: an introduction with 400 problems, Weinheim : Wiley-VCH, 2006, 472 p., ISBN 3-527-40503-8.
  • Goody, R. M. and Y. L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1996 (Second Edition), 534 pages, ISBN 978-0-19-510291-8.
  • Liou, Kuo-Nan, An introduction to atmospheric radiation, Amsterdam ; Boston : Academic Press, 2002, 583 p., International geophysics series, v.84, ISBN 0-12-451451-0.
  • Mobley, Curtis D., Light and water: radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p., ISBN 0-12-502750-8
  • Petty, Grant W, A first course in atmospheric radiation (2nd Ed.), Madison, Wisconsin : Sundog Pub., 2006, 472 p., ISBN 0-9729033-1-3
  • Preisendorfer, Rudolph W., Hydrologic optics, Honolulu, Hawaii : U.S. Dept. of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, 1976, 6 volumes.
  • Stephens, Graeme L., Remote sensing of the lower atmosphere : an introduction, New York, Oxford University Press, 1994, 523 p. ISBN 0-19-508188-9.
  • Thomas, Gary E. and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p., ISBN 0-521-40124-0.
  • Zdunkowski, W., T. Trautmann, A. Bott, Radiation in the Atmosphere. Cambridge University Press, 2007, 496 pages, ISBN 978-0-521-87107-5

External links

  • R.W. Andrews, J.M. Pearce, The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance, Solar Energy, 91,233–241 (2013). DOI:10.1016/j.solener.2013.01.030 open access
  • http://circ.gsfc.nasa.gov/
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.
  • KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • HITRAN Site
  • GEISA Site