Atmospheric radiative transfer codes
An Atmospheric radiative transfer model, code or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere, such as the Earth's.
Contents
Methods
At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation. For an instrument response, this is then convolved with the spectral response of the instrument. A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so.
Applications
Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation.[1] Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols or clouds. In such applications radiative transfer codes are often called radiation parameterization. In these applications the radiative transfer codes are used in forward sense, i.e. on the basis of known properties of the atmosphere one calculates heating rates, radiative fluxes, and radiances.
There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 80's - early 00's. Current (2011) project Continual Intercomparison of Radiation Codes emphasises also using observations to define intercomparison cases. [2]
Table of models
Lua error in package.lua at line 80: module 'strict' not found.
Name |
Website |
References |
UV |
Visible |
Near IR |
Thermal IR |
mm/sub-mm |
Microwave |
line-by-line/band |
Scattering |
Polarised |
Geometry |
License |
Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4A/OP | [1] | Scott and Chédin (1981) | No | No | Yes | Yes | No | No | line-by-line | ? | ? | freeware | ||
6S/6SV1 | [2] | Kotchenova et al. (1997) | No | Yes | No | No | No | No | band | ? | Yes | non-Lambertian surface | ||
ARTS | [3] | Buehler et al. (2005) | No | No | No | Yes | Yes | Yes | line-by-line | Yes | Yes | spherical 1D, 2D, 3D | GPL | |
COART | [4] | Jin et al. (2006) | Yes | Yes | Yes | Yes | No | No | Yes | No | plane-parallel | free | ||
CRM | [5] | No | Yes | Yes | ? | No | No | ? | ? | freely available | Part of NCAR Community Climate Model | |||
CRTM | [6] | No | Yes | Yes | Yes | No | Yes | band | Yes | ? | ||||
DART radiative transfer model | [7] | Gastellu-Etchegorry et al. (1996) | No | Yes | Yes | Yes | No | No | band | Yes | ? | spherical 1D, 2D, 3D | free for research with license | non-Lambertian surface, landscape creation and import |
DISORT | [8] | Stamnes et al. (1988) | Yes | Yes | Yes | Yes | No | radar | Yes | No | plane-parallel | free with restrictions | discrete ordinate, used by others | |
Fu-Liou | [9] | Fu and Liou (1993) | No | Yes | Yes | ? | No | No | Yes | ? | plane-parallel | usage online, source code available | web interface online at [10] | |
FUTBOLIN | Martin-Torres (2005) | λ>0.3 µm | Yes | Yes | Yes | λ<1000 µm | No | line-by-line | Yes | ? | spherical or plane-parallel | handles line-mixing, continuum absorption and NLTE | ||
GENLN2 | [11] | Edwards (1992) | ? | ? | ? | ? | ? | ? | line-by-line | ? | ? | |||
KARINE | [12] | Eymet (2005) | No | No | Yes | No | No | ? | ? | plane-parallel | GPL | |||
KCARTA | [13] | ? | ? | Yes | Yes | ? | ? | line-by-line | Yes | ? | plane-parallel | freely available | AIRS reference model | |
KOPRA | [14] | No | No | No | Yes | No | No | ? | ? | |||||
LBLRTM | [15] | Clough et al. (2005) | Yes | Yes | Yes | Yes | Yes | Yes | line-by-line | ? | ? | |||
LEEDR | [16] | Fiorino et al. (2014) | λ>0.2 µm | Yes | Yes | Yes | Yes | Yes | band or line-by-line | Yes | ? | spherical | US government software | extended solar & lunar sources;
single & multiple scattering |
LinePak | [17] | Gordley et al. (1994) | Yes | Yes | Yes | Yes | Yes | Yes | line-by-line | No | No | spherical (Earth and Mars), plane-parallel | freely available with restrictions | web interface, SpectralCalc |
libRadtran | [18] | Mayer and Kylling (2005) | Yes | Yes | Yes | Yes | No | No | band or line-by-line | Yes | Yes | plane-parallel or pseudo-spherical | GPL | |
MATISSE | [19] | Caillault et al. (2007) | No | Yes | Yes | Yes | No | No | band | Yes | ? | proprietary freeware | ||
MCARaTS | [18] | GPL | 3-D Monte Carlo | |||||||||||
MODTRAN | [20] | Berk et al. (1998) | ṽ<50,000 cm−1 | Yes | Yes | Yes | Yes | Yes | band | Yes | ? | proprietary commercial | solar and lunar source, uses DISORT | |
MOSART | [21] | Cornette (2006) | λ>0.2 µm | Yes | Yes | Yes | Yes | Yes | band | Yes | No | freely available | ||
RFM | [22] | No | No | No | Yes | No | No | line-by-line | ? | ? | available on request | MIPAS reference model based on GENLN2 | ||
RRTM/RRTMG | [23] | Mlawer, et al. (1997) | ṽ<50,000 cm−1 | Yes | Yes | Yes | Yes | ṽ>10 cm−1 | ? | ? | free of charge | uses DISORT | ||
RTMOM | [24] | λ>0.25 µm | Yes | Yes | λ<15 µm | No | No | line-by-line | Yes | ? | plane-parallel | freeware | ||
RTTOV | [25] | Saunders et al. (1999) | λ>0.4 µm | Yes | Yes | Yes | Yes | Yes | band | Yes | ? | available on request | ||
SBDART | [26] | Ricchiazzi et al. (1998) | Yes | Yes | Yes | ? | No | No | Yes | ? | plane-parallel | uses DISORT | ||
SCIATRAN | [27] | Rozanov et al. (2005)
,[24] Rozanov et al. (2014) |
Yes | Yes | Yes | No | No | No | band or line-by-line | Yes | Yes | plane-parallel or pseudo-spherical or spherical | ||
SHARM | Lyapustin (2002) | No | Yes | Yes | No | No | No | Yes | ? | |||||
SHDOM | [28] | Evans (2006) | ? | ? | Yes | Yes | ? | ? | Yes | ? | ||||
Streamer, Fluxnet | [29][30] | Key and Schweiger (1998) | No | No | λ>0.6 mm | λ<15 mm | No | No | band | Yes | ? | plane-parallel | Fluxnet is fast version of STREAMER using neural nets | |
XRTM | [31] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | plane-parallel and pseudo-spherical | GPL | |||
Name | Website | References | UV | VIS | Near IR | Thermal IR | Microwave | mm/sub-mm | line-by-line/band | Scattering | Polarised | Geometry | License | Notes |
Molecular absorption databases
For a line-by-line calculation, one needs characteristics of the spectral lines, such as the line centre, the intensity, the lower-state energy, the line width and the shape.
Name | Author | Description |
---|---|---|
HITRAN[29] | Rothman et al. (1987, 1992, 1998, 2003, 2005, 2009, 2013) | HITRAN is a compilation of molecular spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The original version was created at the Air Force Cambridge Research Laboratories (1960's). The database is maintained and developed at the Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA. |
GEISA[30] | Jacquinet-Husson et al. (1999, 2005, 2008) | GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) is a computer-accessible spectroscopic database, designed to facilitate accurate forward radiative transfer calculations using a line-by-line and layer-by-layer approach. It was started in 1974 at Laboratoire de Météorologie Dynamique (LMD/IPSL) in France. GEISA is maintained by the ARA group at LMD (Ecole Polytechnique) for its scientific part and by the ETHER group (CNRS Centre National de la Recherche Scientifique-France) at IPSL (Institut Pierre Simon Laplace) for its technical part. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board of the METOP European satellite) through the GEISA/IASI database derived from GEISA. |
See also
- Discrete dipole approximation codes
- Codes for electromagnetic scattering by cylinders
- Codes for electromagnetic scattering by spheres
- Optical properties of water and ice
References
- Footnotes
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- General
- Bohren, Craig F. and Eugene E. Clothiaux, Fundamentals of atmospheric radiation: an introduction with 400 problems, Weinheim : Wiley-VCH, 2006, 472 p., ISBN 3-527-40503-8.
- Goody, R. M. and Y. L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1996 (Second Edition), 534 pages, ISBN 978-0-19-510291-8.
- Liou, Kuo-Nan, An introduction to atmospheric radiation, Amsterdam ; Boston : Academic Press, 2002, 583 p., International geophysics series, v.84, ISBN 0-12-451451-0.
- Mobley, Curtis D., Light and water: radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p., ISBN 0-12-502750-8
- Petty, Grant W, A first course in atmospheric radiation (2nd Ed.), Madison, Wisconsin : Sundog Pub., 2006, 472 p., ISBN 0-9729033-1-3
- Preisendorfer, Rudolph W., Hydrologic optics, Honolulu, Hawaii : U.S. Dept. of Commerce, National Oceanic & Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, 1976, 6 volumes.
- Stephens, Graeme L., Remote sensing of the lower atmosphere : an introduction, New York, Oxford University Press, 1994, 523 p. ISBN 0-19-508188-9.
- Thomas, Gary E. and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p., ISBN 0-521-40124-0.
- Zdunkowski, W., T. Trautmann, A. Bott, Radiation in the Atmosphere. Cambridge University Press, 2007, 496 pages, ISBN 978-0-521-87107-5
External links
- ↑ R.W. Andrews, J.M. Pearce, The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance, Solar Energy, 91,233–241 (2013). DOI:10.1016/j.solener.2013.01.030 open access
- ↑ http://circ.gsfc.nasa.gov/
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.
- ↑ KARINE: a tool for infrared radiative transfer analysis in planetary atmospheres par V. Eymet. Note technique interne, Laboratoire d'Energétique, 2005.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ HITRAN Site
- ↑ GEISA Site