Lambert cylindrical equal-area projection
In cartography, the Lambert cylindrical equal-area projection, or Lambert cylindrical projection, is a cylindrical, equal area map projection. It is a member of the cylindrical equal-area projection family. This projection is undistorted along the equator, which is its standard parallel, but distortion increases rapidly towards the poles. Like any cylindrical projection, it stretches parallels increasingly away from the equator. The poles accrue infinite distortion, becoming lines instead of points.
History
The projection is attributed to the Alsatian mathematician Johann Heinrich Lambert in 1772.[1]
In the work On the Sphere and Cylinder, Archimedes shows that a sphere has the same area as a cylinder around it, and although Archimedes did not discuss the projection explicitly his argument shows that the projection preserves areas.
Formulae
where φ is the latitude, λ is the longitude and λ0 is the central meridian.[2]
See also
References
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Map Projections – A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp. 76–85
External links
- Table of examples and properties of all common projections, from radicalcartography.net
- An interactive Java Applet to study the metric deformations of the Lambert Cylindrical Equal-Area Projection.
<templatestyles src="Asbox/styles.css"></templatestyles>