Linear polarization

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves)

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. See polarization for more information.

The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector.[1] For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.

Mathematical description of linear polarization

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)

 \mathbf{E} ( \mathbf{r} , t ) = \mid\mathbf{E}\mid  \mathrm{Re} \left \{  |\psi\rangle  \exp \left [ i \left  ( kz-\omega t  \right ) \right ] \right \}
 \mathbf{B} ( \mathbf{r} , t ) = \hat { \mathbf{z} } \times \mathbf{E} ( \mathbf{r} , t )/c

for the magnetic field, where k is the wavenumber,

 \omega_{ }^{ } = c k

is the angular frequency of the wave, and  c is the speed of light.

Here   \mid\mathbf{E}\mid    is the amplitude of the field and

   |\psi\rangle  \ \stackrel{\mathrm{def}}{=}\  \begin{pmatrix} \psi_x  \\ \psi_y   \end{pmatrix} =   \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right )   \\ \sin\theta \exp \left ( i \alpha_y \right )   \end{pmatrix}

is the Jones vector in the x-y plane.

The wave is linearly polarized when the phase angles  \alpha_x^{ } , \alpha_y are equal,

    \alpha_x =  \alpha_y \ \stackrel{\mathrm{def}}{=}\   \alpha    .

This represents a wave polarized at an angle  \theta    with respect to the x axis. In that case, the Jones vector can be written

   |\psi\rangle  =   \begin{pmatrix} \cos\theta    \\ \sin\theta   \end{pmatrix} \exp \left ( i \alpha \right )   .

The state vectors for linear polarization in x or y are special cases of this state vector.

If unit vectors are defined such that

   |x\rangle  \ \stackrel{\mathrm{def}}{=}\    \begin{pmatrix} 1    \\ 0  \end{pmatrix}

and

   |y\rangle  \ \stackrel{\mathrm{def}}{=}\    \begin{pmatrix} 0    \\ 1  \end{pmatrix}

then the polarization state can be written in the "x-y basis" as

   |\psi\rangle  =  \cos\theta \exp \left ( i \alpha \right ) |x\rangle + \sin\theta \exp \left ( i \alpha \right ) |y\rangle = \psi_x |x\rangle + \psi_y |y\rangle .

See also

References

  • Lua error in package.lua at line 80: module 'strict' not found.

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

External links

 This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".ja:直線偏光

  1. Lua error in package.lua at line 80: module 'strict' not found.