Table of polyhedron dihedral angles
From Infogalactic: the planetary knowledge core
The dihedral angles for the edge-transitive polyhedra are:
Picture | Name | Schläfli symbol |
Vertex/Face configuration |
exact dihedral angle (radians) |
approximate dihedral angle (degrees) |
---|---|---|---|---|---|
Platonic solids (regular convex) | |||||
![]() |
Tetrahedron | {3,3} | (3.3.3) | arccos(1/3) | 70.53° |
![]() |
Hexahedron or Cube | {4,3} | (4.4.4) | π/2 | 90° |
![]() |
Octahedron | {3,4} | (3.3.3.3) | π − arccos(1/3) | 109.47° |
![]() |
Dodecahedron | {5,3} | (5.5.5) | π − arctan(2) | 116.56° |
![]() |
Icosahedron | {3,5} | (3.3.3.3.3) | π − arccos(√5/3) | 138.19° |
Kepler-Poinsot solids (regular nonconvex) | |||||
![]() |
Small stellated dodecahedron | {5/2,5} | (5/2.5/2.5/2.5/2.5/2) | π − arctan(2) | 116.56° |
![]() |
Great dodecahedron | {5,5/2} | (5.5.5.5.5)/2 | arctan(2) | 63.435° |
![]() |
Great stellated dodecahedron | {5/2,3} | (5/2.5/2.5/2) | arctan(2) | 63.435° |
![]() |
Great icosahedron | {3,5/2} | (3.3.3.3.3)/2 | arcsin(2/3) | 41.810° |
Quasiregular polyhedra (Rectified regular) | |||||
![]() |
Tetratetrahedron | r{3,3} | (3.3.3.3) | ![]() |
109.47° |
![]() |
Cuboctahedron | r{3,4} | (3.4.3.4) | ![]() |
125.264° |
![]() |
Icosidodecahedron | r{3,5} | (3.5.3.5) | ![]() |
142.623° |
![]() |
Dodecadodecahedron | r{5/2,5} | (5.5/2.5.5/2) | π − arctan(2) | 116.56° |
![]() |
Great icosidodecahedron | r{5/2,3} | (3.5/2.3.5/2) | ||
Ditrigonal polyhedra | |||||
![]() |
Small ditrigonal icosidodecahedron | a{5,3} | (3.5/2.3.5/2.3.5/2) | ||
![]() |
Ditrigonal dodecadodecahedron | b{5,5/2} | (5.5/3.5.5/3.5.5/3) | ||
![]() |
Great ditrigonal icosidodecahedron | c{3,5/2} | (3.5.3.5.3.5)/2 | ||
Hemipolyhedra | |||||
![]() |
Tetrahemihexahedron | o{3,3} | (3.4.3/2.4) | 54.73° | |
![]() |
Cubohemioctahedron | o{3,4} | (4.6.4/3.6) | 54.73° | |
![]() |
Octahemioctahedron | o{4,3} | (3.6.3/2.6) | 70.53° | |
![]() |
Small dodecahemidodecahedron | o{3,5} | (5.10.5/4.10) | 26.063° | |
![]() |
Small icosihemidodecahedron | o{5,3} | (3.10.3/2.10) | 116.56° | |
![]() |
Great dodecahemicosahedron | o{5/2,5} | (5.6.5/4.6) | ||
![]() |
Small dodecahemicosahedron | o{5,5/2} | (5/2.6.5/3.6) | ||
![]() |
Great icosihemidodecahedron | o{5/2,3} | (3.10/3.3/2.10/3) | ||
![]() |
Great dodecahemidodecahedron | o{3,5/2} | (5/2.10/3.5/3.10/3) | ||
Quasiregular dual solids | |||||
![]() |
Rhombic hexahedron (Dual of tetratetrahedron) |
- | V(3.3.3.3) | π − π/2 | 90° |
![]() |
Rhombic dodecahedron (Dual of cuboctahedron) |
- | V(3.4.3.4) | π − π/3 | 120° |
![]() |
Rhombic triacontahedron (Dual of icosidodecahedron) |
- | V(3.5.3.5) | π − π/5 | 144° |
![]() |
Medial rhombic triacontahedron (Dual of dodecadodecahedron) |
- | V(5.5/2.5.5/2) | π − π/3 | 120° |
![]() |
Great rhombic triacontahedron (Dual of great icosidodecahedron) |
- | V(3.5/2.3.5/2) | π − π/(5/2) | 72° |
Duals of the ditrigonal polyhedra | |||||
30px | Small triambic icosahedron (Dual of small ditrigonal icosidodecahedron) |
- | V(3.5/2.3.5/2.3.5/2) | ||
![]() |
Medial triambic icosahedron (Dual of ditrigonal dodecadodecahedron) |
- | V(5.5/3.5.5/3.5.5/3) | ||
![]() |
Great triambic icosahedron (Dual of great ditrigonal icosidodecahedron) |
- | V(3.5.3.5.3.5)/2 | ||
Duals of the hemipolyhedra | |||||
![]() |
Tetrahemihexacron (Dual of tetrahemihexahedron) |
- | V(3.4.3/2.4) | π − π/2 | 90° |
![]() |
Hexahemioctacron (Dual of cubohemioctahedron) |
- | V(4.6.4/3.6) | π − π/3 | 120° |
![]() |
Octahemioctacron (Dual of octahemioctahedron) |
- | V(3.6.3/2.6) | π − π/3 | 120° |
![]() |
Small dodecahemidodecacron (Dual of small dodecahemidodecacron) |
- | V(5.10.5/4.10) | π − π/5 | 144° |
![]() |
Small icosihemidodecacron (Dual of small icosihemidodecacron) |
- | V(3.10.3/2.10) | π − π/5 | 144° |
![]() |
Great dodecahemicosacron (Dual of great dodecahemicosahedron) |
- | V(5.6.5/4.6) | π − π/3 | 120° |
![]() |
Small dodecahemicosacron (Dual of small dodecahemicosahedron) |
- | V(5/2.6.5/3.6) | π − π/3 | 120° |
![]() |
Great icosihemidodecacron (Dual of great icosihemidodecacron) |
- | V(3.10/3.3/2.10/3) | π − π/(5/2) | 72° |
![]() |
Great dodecahemidodecacron (Dual of great dodecahemidodecacron) |
- | V(5/2.10/3.5/3.10/3) | π − π/(5/2) | 72° |
References
- Coxeter, Regular Polytopes (1963), Macmillan Company
- Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (Table I: Regular Polytopes, (i) The nine regular polyhedra {p,q} in ordinary space)
- Lua error in package.lua at line 80: module 'strict' not found. (Section 3-7 to 3-9)
- Weisstein, Eric W., "Uniform Polyhedron", MathWorld.