Theaflavin
Names | |
---|---|
IUPAC name
3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-2-chromanyl]-6-benzo[7]annulenone
|
|
Identifiers | |
4670-05-7 | |
ChEMBL | ChEMBL346119 |
ChemSpider | 102754 |
Jmol 3D model | Interactive image |
PubChem | 114777 |
UNII | 1IA46M0D13 |
|
|
|
|
Properties | |
C29H24O12 | |
Molar mass | 564.50 g·mol−1 |
Vapor pressure | {{{value}}} |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
verify (what is ?) | |
Infobox references | |
Theaflavin (TF) and its derivatives, known collectively as theaflavins, are antioxidant polyphenols that are formed from the condensation of flavan-3-ols in tea leaves during the enzymatic oxidation (fermentation) of black tea. Theaflavin-3-gallate, theaflavin-3'-gallate, theaflavin-3-3'-digallate are the main theaflavins.[1] Theaflavins are types of thearubigins, and are therefore reddish in color. Epigallocatechin gallate (EGCG) will metabolize into some theaflavins in the liver.[citation needed]
Research into health effects
HIV
In in vitro laboratory investigations, several tea polyphenols, especially those with galloyl moiety, can inhibit HIV-1 replication with multiple mechanisms of action. Theaflavin derivatives have been found to have more potent anti-HIV-1 activity than catechin derivatives.[2]
Epigallocatechin gallate (EGCG), a catechin in green tea, binds to gp120, which works in conjunction with gp41, itself blocked by TF-3 (a theaflavin), both receptors of which HIV hijacks to enter into healthy human immune cells.[citation needed]
Cholesterol
In a human clinical trial published in 2003, theaflavins were found to reduce blood cholesterol levels, both total and LDL.[3]
Cancer
In in vitro laboratory investigations, theaflavins have been found to act on numerous points regulating cancer cell growth, survival, and metastasis.[4] For example, TF-3 is a potent scavenger of superoxide.[5]
See also
References
- ↑ http://www.rxlist.com/theaflavin/supplements.htm
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Bode AM and Dong Z. (2006) Molecular and Cellular Targets Mol Carcinog 45(6): 422–430.
- ↑ Journal of Agricultural and Food Chemistry:Inhibition of Xanthine Oxidase and Suppression of Intracellular Reactive Oxygen Species in HL-60 Cells by Theaflavin-3,3‘-digallate, (−)-Epigallocatechin-3-gallate, and Propyl Gallate