Vector algebra relations

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

The relations below apply to vectors in a three-dimensional Euclidean space.[1] Some, but not all of them, extend to vectors of higher dimensions. In particular, the cross product of two vectors is not available in all dimensions. See Seven-dimensional cross product.

Magnitudes

The magnitude of a vector A is determined by its three components along three orthogonal directions using Pythagoras' theorem:

\|\mathbf A \|^2 = A_1^2 + A_2^2 +A_3^2 \

The magnitude also can be expressed using the dot product:

\|\mathbf A \|^2 = (\mathbf {A \cdot A}) \

Inequalities

\frac{ \mathbf{A \cdot B}}{\|\mathbf A \| \|\mathbf B \|} \le 1 \ ; Cauchy–Schwarz inequality in three dimensions
\|\mathbf{A + B}\| \le \| \mathbf{A}\| + \|\mathbf{B}\| ; the triangle inequality in three dimensions
\|\mathbf{A - B}\| \ge \| \mathbf{A}\| - \|\mathbf{B}\| ; the reverse triangle inequality

Here the notation (A · B) denotes the dot product of vectors A and B.

Angles

The vector product and the scalar product of two vectors define the angle between them, say θ:[1][2]

\sin \theta =\frac{\|\mathbf{A \times B}\|}{\|\mathbf A \| \|\mathbf B \|} \ \ ( -\pi < \theta \le \pi )

To satisfy the right-hand rule, for positive θ, vector B is counter-clockwise from A, and for negative θ it is clockwise.

\cos \theta = \frac{ \mathbf{A \cdot B}}{\|\mathbf A \| \|\mathbf B \|} \ \ ( -\pi < \theta \le \pi )

Here the notation A × B denotes the vector cross product of vectors A and B. The Pythagorean trigonometric identity then provides:

  \|\mathbf{A \times B}\|^2 +(\mathbf{A \cdot B})^2 = \|\mathbf A \|^2   \|\mathbf B \|^2

If a vector A = (Ax, Ay, Az) makes angles α, β, γ with an orthogonal set of x-, y- and z-axes, then:

 \cos \alpha = \frac{ A_x }{ \sqrt {A_x^2 +A_y^2 +A_z^2} }  = \frac {A_x} {\| \mathbf A \|} \ ,

and analogously for angles β, γ. Consequently:

\mathbf A = \|\mathbf A \|\left( \cos \alpha \  \hat{\mathbf  i}  +  \cos \beta\  \hat{\mathbf  j} +  \cos \gamma \ \hat{\mathbf  k}  \right) \ ,

with \hat{\mathbf  i}, \ \hat{\mathbf  j}, \ \hat{\mathbf  k} unit vectors along the axis directions.

Areas and volumes

The area Σ of a parallelogram with sides A and B containing the angle θ is:

 \Sigma = AB \ \sin \theta \ ,

which will be recognized as the magnitude of the vector cross product of the vectors A and B lying along the sides of the parallelogram. That is:

\Sigma = \|\mathbf { A \times B } \| = \sqrt{ \|\mathbf A\|^2 \|\mathbf B\|^2 -(\mathbf{A \cdot B} )^2} \ .

The square of this expression is:[3]

\Sigma^2 = (\mathbf{A \cdot A })(\mathbf{B \cdot B })-(\mathbf{A \cdot B })(\mathbf{B \cdot A })=\Gamma(\mathbf A,\ \mathbf B ) \ ,

where Γ(A, B) is the Gram determinant of A and B defined by:

\Gamma(\mathbf A,\ \mathbf B )=\begin{vmatrix} \mathbf{A\cdot A} & \mathbf{A\cdot B} \\
 \mathbf{B\cdot A} & \mathbf{B\cdot B}  \end{vmatrix} \ .

In a similar fashion, the squared volume V of a parallelepiped spanned by the three vectors A, B and C is given by the Gram determinant of the three vectors:[3]

V^2 =\Gamma ( \mathbf A ,\ \mathbf B ,\  \mathbf C ) = \begin{vmatrix} \mathbf{A\cdot A} & \mathbf{A\cdot B} & \mathbf{A\cdot C} \\\mathbf{B\cdot A} & \mathbf{B\cdot B} & \mathbf{B\cdot C}\\
 \mathbf{C\cdot A} & \mathbf{C\cdot B} & \mathbf{C\cdot C}  \end{vmatrix} \ .

This process can be extended to n-dimensions.

Addition and multiplication of vectors

Some of the following algebraic relations refer to the dot product and the cross product of vectors. These relations can be found in a variety of sources, for example, see Albright.[1]

  •  c (\mathbf{A}+\mathbf{B})=c\mathbf{A}+c\mathbf{B} ; distributivity of multiplication by a scalar and addition
  •  \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} ; commutativity of addition
  •  \mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C} ; associativity of addition
  •  \mathbf{A}\cdot\mathbf{B}=\mathbf{B}\cdot\mathbf{A} ; commutativity of scalar (dot) product
  •  \mathbf{A}\times\mathbf{B}=\mathbf{-B}\times\mathbf{A} ; anticommutativity of vector cross product
  •  \left(\mathbf{A}+\mathbf{B}\right)\cdot\mathbf{C}=\mathbf{A}\cdot\mathbf{C}+\mathbf{B}\cdot\mathbf{C} ; distributivity of addition wrt scalar product
  •  \left(\mathbf{A}+\mathbf{B}\right)\times\mathbf{C}=\mathbf{A}\times\mathbf{C}+\mathbf{B}\times\mathbf{C} ; distributivity of addition wrt vector cross product
  •  \mathbf{A}\cdot\left(\mathbf{B}\times\mathbf{C}\right)=\mathbf{B}\cdot\left(\mathbf{C}\times\mathbf{A}\right)=\left(\mathbf{A}\times\mathbf{B}\right)\cdot\mathbf{C}
=\left|\begin{array}{ccc}
A_{x} & B_{x} & C_{x}\\
A_{y} & B_{y} & C_{y}\\
A_{z} & B_{z} & C_{z}\end{array}\right| = [\mathbf{A, \ B,\  C }]  ; scalar triple product
In particular, when A = C and B = D, the above reduces to:
\mathbf{(A \times B) \cdot (A \times B)   =   |A \times B|^2  =   (A \cdot A) (B \cdot B)-(A \cdot B)^2 } ; Lagrange's identity in three dimensions
  • [\mathbf{A},\mathbf{B},\mathbf{C}]\mathbf{D}=\left(\mathbf{A}\cdot\mathbf{D}\right)\left(\mathbf{B}\times\mathbf{C}\right)+\left(\mathbf{B}\cdot\mathbf{D}\right)\left(\mathbf{C}\times\mathbf{A}\right)+\left(\mathbf{C}\cdot\mathbf{D}\right)\left(\mathbf{A}\times\mathbf{B}\right)
  • A vector quadruple product, which is also a vector, can be defined, which satisfies the following identities:[4][5]
(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = [\mathbf{A},\mathbf{B}, \mathbf{D}]\mathbf{C}-[\mathbf{A},\mathbf{B}, \mathbf{C}]\mathbf{D}=
[\mathbf{A},\mathbf{C}, \mathbf{D}]\mathbf{B}-[\mathbf{B}, \mathbf{C},\mathbf{D}]\mathbf{A}
where [A, B, C] is the scalar triple product A · (B × C) or the determinant of the matrix {A, B, C} with the components of these vectors as columns .
  • Given three arbitrary vectors not on the same line, A, B, C, any other vector D can be expressed in terms of these as:[6]
\mathbf D = \frac{\mathbf{D \cdot (B \times C)}}{[\mathbf {A,\ B, \ C}]}\ \mathbf A +\frac{\mathbf{D \cdot (C \times A)}}{[\mathbf {A,\ B, \ C}]}\ \mathbf B + \frac{\mathbf{D \cdot (A \times B)}}{[\mathbf {A,\ B, \ C}]}\ \mathbf C \ .

References

  1. 1.0 1.1 1.2 See, for example, Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. This formula is applied to spherical trigonometry by Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.

See also